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Abstract

We theoretically examine the drying of a stationary liquid droplet on an inclined

surface. Both analytical and numerical approaches are considered, while assuming

that the evaporation results from a purely diffusive transport of the liquid vapor and

that the contact line is a pinned circle. For the purposes of our analytical calcula-

tions, we suppose that the effect of gravity relative to the surface tension is weak,

i.e. the Bond number (Bo) is small. Then, we express the shape of the drop and

the vapor concentration field as perturbation expansions in terms of Bo. When the

Bond number is zero, the droplet is unperturbed by the effect of gravity and takes

the form of a spherical cap, for which the vapor concentration field is already known.

Here, the Young-Laplace equation is solved analytically to calculate the first-order

correction to the shape of the drop. Knowing the first-order perturbation to the drop

geometry and the zeroth-order distribution of vapor concentration, we obtain the

leading-order contribution of gravity to the rate of droplet evaporation by utilizing

Green’s second identity. The analytical results are supplemented by numerical cal-

culations, where the droplet shape is first determined by minimizing the Helmholtz

free energy, then the evaporation rate is computed by solving Laplace’s equation for

the vapor concentration field via a finite volume method. Perhaps counter-intuitively,

we find that even when the droplet deforms noticeably under the influence of grav-

ity, the rate of evaporation remains almost unchanged, as if no gravitational effect

xi
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is present. Furthermore, comparison between analytical and numerical calculations

reveals that considering only the leading order corrections to the shape of the droplet

and vapor concentration distribution provides estimates that are valid well beyond

their intended limit of very small Bo.
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Chapter 1

Introduction

Liquid droplets are ubiquitous in daily life, whether it is a spilled beverage on a table

or morning dew on the hood of a car (see Fig. 1.1). Everyone has seen these quasi-

spherical liquid forms and how they evaporate over time if left alone. Perhaps even,

when driving while it is raining, one may have made the observation that the form of

these drops change when on an inclined surface like a windshield. When on a slope, the

seemingly spherical drops become more asymmetric with the majority of the volume

shifted in the direction of the downward slope. A question that naturally arises from

these observations is, how does the deformation of a droplet caused by gravity affect

the rate of evaporation. The answer to this question is not only of general interest

from a fundamental point of view, but is also of great relevance to the real-world

applications that involve the drying of sessile droplets.

A large number of the applications that utilize the evaporation of sessile drops deal

with colloidal suspensions that leave behind a residue once they completely dry out.

1
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Figure 1.1: Example of sessile drops on solar panels (Photo Credit: Oregon
Department of Transportation).

Common examples include ink-jet printing [1–6], fabricating ordered microelectronic

structures via evaporative self-assembly [7–15], analysis of blood stain patterns for

forensic and disease examination[16, 17], and fabrication of photovoltaic panels [18–

20].

To date, the majority of studies on the evaporation of sessile drops have focused on

axisymmetric geometries on horizontal substrates [21–26]. This simplification, how-

ever useful, is limiting, for in many practical situations, the droplets may rest on an

incline. Among the small number of investigations that considered asymmetric sessile

droplets, Esṕın and Kumar [27] and Du and Deegan [28] numerically examined the

drying of (and the resulting flow field inside) two-dimensional colloidal droplets on

inclined substrates. Also, Sáenz et al. [29] studied, both experimentally and numer-

ically, the evaporation kinetics of non-axisymmetric drops placed on a flat surface

and presented a general scaling law for the integrated evaporative flux. Lastly, Kim

et al. [30] experimentally measured the lifetime and evaporation dynamics of water

2
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droplets on slopes of various tilt angles. Overall, a close inspection of the literature

indicates that our theoretical understanding of the effect of gravity on the evapora-

tion of droplets on tilted substrates is incomplete. Attempting to partially fill the

aforementioned knowledge gap, here, we theoretically analyze the drying of a sessile

droplet on a slope.

Utilizing perturbation expansions coupled with known solutions for sessile drops

on horizontal substrates [31, 32], we analytically derive a model for the shape of

the deformed droplet while assuming the contact radius is a pinned circle. Starting

from the Young-Laplace equation, we formulate a simple first-order expression that

captures the asymmetric geometry of the drop in a spherical coordinate system. In

our derivation, the Bond number Bo is used to relate the effects of gravity relative

to the surface tension, allowing us to analyze the shape of the drop in dimensionless

terms.

To supplement our analytical results we numerically calculate the shape of the

perturbed drop using the same basic assumptions. Our numerical analysis uses an

energy minimization method while enforcing the conservation of volume. Using this

method, the angle of inclination is included by calculating the components of the

gravitational potential normal and lateral to the substrate. This allows us to both

bolster our analytical solution utilizing an independent method, and to analyze the

drop evaporation with confidence in our geometries.

3
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The total rate of evaporation is the final question we want to answer, and de-

termine what effect the slope of the substrate has on this process. Similar to the

calculation of the drop shape, we use a combination of analytical and numerical anal-

ysis to solve for the evaporation of the perturbed drop. In our analyses, we assume

the evaporation is purely a result of the diffusive transport of liquid vapor, and that

Bo is sufficiently small. Comparing our results ensures the accuracy of our analytical

model for the rate of evaporation and provides keen insight into the relation to the

slope of the substrate.

Our analytical derivation starts with the Laplace equation from our assumption of

purely diffusive evaporation. Knowing the distribution for the concentration field of

an axisymmetric drop [31], we use the first order correction to the drop shape coupled

with Green’s second identity to derive the leading-order contribution of gravity on

the total rate of evaporation.

With the drop geometries generated and the same assumptions as our analytical

derivation, we numerically calculate the total rate of evaporation using a finite volume

method. Our numerical simulations are conducted by prescribing the vapor concen-

tration on the surface of the drop as well as at infinity. These numerical calculations

provide us with a solution for the rate of evaporation of the perturbed sessile drop

with which we can confirm the accuracy of our analytical model.

Interestingly, we discover that even when the droplet geometry is significantly

distorted by gravity, the rate at which the droplet loses mass changes only slightly.

4
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This and other findings of our study provide additional insights into the evaporation

of droplets on oblique planes. In the following chapters, we will first formulate the

mathematical problem and describe its perturbation and numerical solutions. Then,

we will present the results, discuss the implications, and provide a brief summary in

the last chapter.

5
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Chapter 2

Shape of a droplet resting on an

inclined substrate

2.1 Problem statement

Our eventual goal is to show how the total rate of evaporation of a sessile drop is

related to the Bond number and the slope of the substrate, however, the shape of the

drop is an integral part of this problem and must first be discussed. The shape of a

sessile drop is determined by several factors including its volume, the type of liquid

involved, the wetting properties of the substrate, and any outside forces acting on

the drop. In most of the previous studies, the substrate is assumed to be a horizontal

plane, where gravity only acts normal to the surface. This assumption allows the

drop to be considered axisymmetric. However, this simplification does not allow for

the consideration of asymmetric geometries present in many real-world applications.

6
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When the surface is tilted to some angle α, gravity no longer acts purely normal

to the substrate, but instead contains a component that is parallel to the surface.

This change means the drop is perturbed in the downward direction of the slope as

shown in Fig. 2.1, and hence, α must also be considered while calculating the shape

of the drop. The deformation of the droplet shape, in our case, is determined by two

competing forces, surface tension and gravity. Depending on the volume of the drop

and the angle of inclination, gravity will have a smaller or greater affect on the shape

of the drop. This is why we derive all of our models, both for the drop shape as well

as for the evaporation, in terms of the Bond number

Bo =
ρgR2

c

γ
, (2.1)

where Rc is the radius of the spherical cap (see Fig. 2.1), ρ is the density of the liquid,

g is the gravitational acceleration, and γ is the surface tension. The Bond number is

a dimensionless parameter that relates the force of gravity to the surface tension.

It is well-known that the shape of a drop in the absence of gravity is a spherical

cap. Knowing that, we can use perturbation theory to find the deviations in geometry

induced by Bo and α to calculate the shape of the deformed drop while assuming

the contact line is a pinned circle. To solve for the deformed shape of the drop, we

analytically derive a model in spherical coordinates utilizing perturbation expansions.

This allows us to describe the geometry (and eventually evaporation rate) of a sessile

drop on a slope using a simple first-order expression. To supplement our analytical

solution for the droplet shape, we also numerically compute the surface geometry

7
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(a) (b) (c)

α

θ

g
g sin α

x

z

R

R

g cos α

θc Rc

Figure 2.1: (a) A stationary droplet on an inclined surface. (b) Side view of
panel (a), where the inclination angle is denoted by α and the arrow shows
the direction of the gravity vector g. (c) Rotated, by −α, view of panel (b).

using an energy minimization method. Utilizing both of these methods provides us

with additional confirmation of our results and insight into the conditions for which

our analytical model is valid.

2.2 Analytical solution using a perturbation the-

ory

Consider a static droplet (at room conditions) on a flat plate at angle α relative to the

horizontal plane and suppose that the gravity acts in the downward vertical direction

(see Figs. 2.1a and 2.1b). The equilibrium shape of the droplet is set by the force

balance at the liquid-air interface, where the pressure difference across the interface

is offset by the force of surface tension. Mathematically, the balance is expressed

through the Young-Laplace equation

p− patm = ∇ · n = −2H, (2.2)

8
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where p, patm, n, and H denote the dimensionless hydrostatic pressure just below

the interface, dimensionless atmospheric pressure, unit vector outward normal to the

interface, and dimensionless mean local curvature, respectively [33]. In all of our

analyses, pressure and length are nondimensionalized by γ/Rc and Rc, respectively,

where γ is the surface tension and Rc is a characteristic length of the droplet (see

Fig. 2.1c). Equation 2.2 can also be derived from the minimum energy principle,

which requires the equilibrium shape of the droplet to be the one that minimizes the

Helmholtz free energy, subject to constant volume and other imposed constraints, if

any [33].

Let (x, y, z) be the components of a Cartesian coordinate system with the origin

at the center of the contact line, as depicted in Fig. 2.1c. The hydrostatic pressure

can then be expressed as

p = p0 − Bo z cosα + Box sinα, (2.3)

where p0 is the reference pressure at the origin.

In the absence of gravity (i.e. Bo = 0), p does not vary along the interface (ir-

respective of the tilt angle α) and, therefore, ∆p = p − patm becomes a constant.

Hence, the mean curvature H is constant, meaning that the droplet takes the form

of a spherical cap with a contact angle that depends on the wetting properties of

the substrate. When the effect of gravity compared to that of surface tension is not

negligible (i.e. Bo is finite), the hydrostatic pressure no longer stays uniform and, as

9
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a result, the drop geometry deviates from a spherical cap. In general, Eq. 2.2 is chal-

lenging to solve analytically for arbitrary Bo. However, in situations where gravity is

present, but weak (i.e. Bo � 1), the shape of the drop can be treated as a slightly

perturbed spherical cap [34, 35]. In this limit, the Young-Laplace equation can be

solved via a regular perturbation expansion in terms of Bo [35]. In the following, we

describe the derivation.

To simplify the calculations, we follow previous studies [28, 35] and assume that

the three-phase contact line is a pinned circle of radiusR (see Fig. 2.1c). This condition

is met, for example, when the droplet is initially deposited on a horizontal substrate

(where it forms a pinned circular contact line) and then the substrate is gently tilted

to an angle α. Considering that the unperturbed shape of the droplet is a spherical

cap, it is more convenient to carry out the derivation in a spherical coordinate system

whose components (r, θ, ϕ) are related to the Cartesian coordinates as

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ − cos θc. (2.4)

Here, Rc and θc, respectively, denote the values of r and θ at the contact line (see Fig.

2.1c), and are related to the volume of the droplet V and the radius of the contact

line R via

V/R3
c = (π/3) (2 + cos θc) (1− cos θc)

2 , R/Rc = sin θc. (2.5)

In (r, θ, ϕ) coordinates, the free surface of the droplet can be described as the zero

level set of

Γ(r, θ, ϕ; Bo) = r −R(θ, ϕ; Bo), (2.6)

10
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where R is the dimensionless shape function that we seek to determine for a given

Bo. This function shall satisfy the condition R(θc, ϕ; Bo) = 1 as well as the constraint

that the volume enclosed between the free surface and the substrate be equal to V .

Following Eq. 2.6, the right-hand side of Eq. 2.2 can be written as

∇ · n = −2H = ∇ · ∇Γ

|∇Γ| . (2.7)

Having set up the desired coordinate system, we now pose perturbation expansions

as

R = R(0) + BoR(1) +O(Bo2), (2.8a)

H = H(0) + BoH(1) +O(Bo2), (2.8b)

p0 = p
(0)
0 + Bo p

(1)
0 +O(Bo2), (2.8c)

which, upon substitution into Eq. 2.2 and the application of the pinned contact line

condition, yield

p
(0)
0 = patm − 2H(0) with R(0)(θc, ϕ) = 1, (2.9a)

p
(1)
0 = (cos θ − cos θc) cosα− sin θ cosφ sinα− 2H(1) with R(1)(θc, ϕ) = 0.

(2.9b)

Note that the reference pressure is not known a priori and is calculated as a part of

the solution.

As discussed earlier, at the zeroth-order, we have

R(0) = 1, H(0) = −1, p
(0)
0 = patm + 2. (2.10)

11
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Replacing Eq. 2.8a for R in Eq. 2.6, while accounting for Eq. 2.10, and then substi-

tuting the result into Eq. 2.7, we obtain

H(1) =
1

2

(
∂2R(1)

∂θ2
+

1

sin2 θ

∂2R(1)

∂ϕ2
+

1

tan θ

∂R(1)

∂θ
+ 2R(1)

)
(2.11)

for the first-order correction to the mean curvature of the interface. Equations 2.9b

and 2.11 together constitute a partial differential equation (PDE) for R(1). The lin-

earity and structure of this PDE suggest a superposition solution in the form of

R(1)(θ, ϕ) = R(1)
ax (θ) cosα +R(1)

nax(θ) cosϕ sinα, (2.12)

where R(1)
ax and R(1)

nax represent the axisymmetric and non-axisymmetric deformation

of the droplet, respectively, and satisfy the following ordinary differential equations:

R(1)
ax
′′ +
R(1)
ax
′

tan θ
+ 2R(1)

ax − cos θ + cos θc +
p
(1)
0

cosα
= 0 with R(1)

ax
′(0) = R(1)

ax (θc) = 0,

(2.13)

R(1)
nax
′′ +
R(1)
nax
′

tan θ
+

(
2− 1

sin2 θ

)
R(1)
nax + sin θ = 0 with R(1)

nax(0) = R(1)
nax(θc) = 0.

(2.14)

The boundary conditions at θ = 0 ensure that the interface is continuous and smooth.

Also, p
(1)
0 is included in the equation for R(1)

ax because it is invariant to changes in the

tilt angle from α to −α, which indicates that its value is proportional to cosα. The

exact solutions of Eqs. 2.13 and 2.14 are, respectively,

R(1)
ax (θ) =

1

6

[(
3 cos θc +

3p
(1)
0

cosα
− 2

)(
cos θ

cos θc
− 1

)
− 2 cos θ ln

(
1 + cos θ

1 + cos θc

)]

=
1

6

{
cos θ

[
1− 2 ln

(
1 + cos θ

1 + cos θc

)]
− cos θc

}
, (2.15)

12
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R(1)
nax(θ) =

1

3

{
sin θ

[
ln

(
1 + cos θ

1 + cos θc

)
− tan

θc
2

cot θc

]
+ tan

θ

2
cos θ

}
, (2.16)

where

p
(1)
0 =

2

3
cosα (1− cos θc) . (2.17)

The first-order correction to the reference pressure is calculated by enforcing that

the perturbations due to R(1) do not alter the volume of the droplet. After some

manipulations, this requirement simplifies to∫ θc

0

R(1)
ax (θ) sin θ dθ = 0. (2.18)

Finally, we note that the preceding derivation can also be performed (with some

additional steps) in a cylindrical coordinate system centered at (x = 0, y = 0, z =

0) [35]. However, eventually a transformation to the spherical coordinates becomes

necessary since overhangs and θc > π/2 cannot be handled in that system.

2.3 Numerical solution based on energy minimiza-

tion

The above perturbation solution is expected to be accurate for small Bond numbers.

To cover a wider range of Bo, one could continue solving for higher-order correc-

tions analytically, which is mathematically involved. Instead, we resort to numerical

simulation. As mentioned earlier, the shape of the droplet can be determined, alterna-

tively, by minimizing the Helmholtz free energy of the system, given the constraints

13
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(a) (b)

Figure 2.2: (a) Initial and (b) converged geometry of sessile drop from
the Surface Evolver with parameters Bo = 5, θc = π/2, and α = π/6. For
visualization purposes the discretized mesh shown in (b) is coarser than what
was actually used in our numerical analyses.

of constant volume and pinned circular contact line. In fact, this approach is more

amenable to numerical computation. We use the Surface Evolver [36] to numerically

solve for the shape of the droplet, with no restriction on Bo as long as the results are

physically meaningful. The Surface Evolver is a well-established computer program

that minimizes the energy of a surface (which can take various forms) subject to

constraints. Details of the implementation can be found in Refs. 36–38.

Provided with an initial simplified geometry (see Fig. 2.2a), geometrical con-

straints, and physical parameters, the 3D surface geometry of the perturbed drop

is calculated by minimizing the Helmholtz free energy, following the negative energy

gradient [36–38]. The initial geometry is discretized using a simplicial complex repre-

sentation, which is refined after each iteration. This procedure continues for as many

iterations as needed for the geometry to become sufficiently converged as shown in

Fig. 2.2b.

As previously discussed, we need several initial parameters and conditions to be
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defined before we can numerically compute the surface geometry of the sessile drop.

The initial geometry is specified to be a rectangular prism of volume V (see Fig.

2.2a). The bottom surface of the prism is set to be coincident with the substrate and

is given a no penetration boundary condition. The relationship to the pinned contact

radius is also specified; that is the four nodes in contact with the substrate lie on

the three phase contact line (a circle of radius R). Since the base area of the initial

geometry is dependent on R, the height of the prism is determined by the volume of

the drop (Eq. 2.5). Additionally, all new nodes generated from the mesh refinement

that are coincident with the substrate, will also be constrained to the contact line.

For our fundamental analysis, we are only interested in the effects of the Bond

number and inclination angle on the total rate of evaporation, hence we create a

non-dimensional model of the sessile drop and set all non-pertinent parameters (R,

γ, ρ) equal to one. Through the use of the Surface Evolver, we iteratively solve the

energy minimization problem and refine the mesh characterizing the surface of the

sessile drop resulting in a locus of points that can be used to create the 3D geometry.

For the purposes of comparison between our analytical and numerical models, we

chose to explore the effects of three main parameters, Bo, α, and the volume of the

drop. Since we are keeping R constant for all simulations, the volume of the drop

is only dependent on θc (see Eq. 2.5), so we adjust this variable to change the drop

volume, and hence will refer to θc for different drop volumes. We create and compare

geometries using four values of α (0, π/6, π/3, and π/2), four θc (π/6, π/3, π/2, and
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2π/3), and a series of Bo ranging from 0 to 80. In the following section, we discuss

the results from our analysis as well as the comparison between them.

2.4 Results and discussion

In this chapter, we have analytically derived a first-order expression for the shape of

a sessile drop from the Young-Laplace equation as a function of the Bond number Bo,

the drop volume (i.e. θc), and the angle of inclination α. We have also numerically

computed the geometry using an energy minimization method allowing us to compare

the models for the surface geometry using identical conditions and constraints, to

test the validity of our first-order expression for the drop shape. For the purposes

of comparison, we use the 2D profile along the symmetry plane of the drop which

provides the largest deviation in geometry.

Under trivial conditions, meaning Bo = 0, our first-order expression for the droplet

shape exactly matches that of the numerical simulation. This expected result provides

a useful baseline for further comparisons between our analytical and numerical models.

Next, we want to test how the Bond number affects the shape of the drop before

introducing any inclination to the substrate (α = 0). The results from these tests can

be seen in Fig. 2.3, where each column refers to a different θc (and hence a different

drop volume), and each comparison plot represents the Bond number displayed under

that plot.

In this and future figures displaying our results for the drop shape, the Bond
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Figure 2.3: Center-line profiles of sessile drops for varying Bo and θc, while
α = 0 is constant.

number will generally increase in each successive row, allowing for easy visualization

of trends. Additionally, the results from our numerical calculations, represented with

the green solid lines, are shown along the predictions of the perturbation theory

represented by the red solid lines. The comparisons in Fig. 2.3 clearly show that

our first-order expression for the droplet shape near identically matches that of the

numerical solution within our condition that the Bond number be small. Additionally,
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Figure 2.4: Center-line profiles of sessile drops for varying Bo and θc, while
α = π/6 is constant.

we surprisingly see high agreeance between our models of the drop shape outside

the pre-set condition that Bo � 1, especially for small θc. However, the deviation

between our analytical expression and the numerical solution expectedly increases

with increasing Bond number. One may also notice that the first-order expression

starts to deviate from the numerical solution at smaller Bond numbers as θc (or

drop volume) increases. This shows us that the accuracy of our first order expression
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Figure 2.5: Center-line profiles of sessile drops for varying Bo and θc, while
α = π/3 is constant.

compared to the numerical solution is dependent on Bo as well as θc.

Now that we have an idea of what happens to the droplet shape under basic

conditions (α = 0), we want to see how the inclination angle affects the shape of the

drop by increasing α to π/6. As can be seen in Fig. 2.4, there exists many of the same

phenomena as in the case where α = 0, e.g. high agreeance between models at small

Bo and increasing deviation with increasing Bo and θc.
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Figure 2.6: Center-line profiles of sessile drops for varying Bo and θc, while
α = π/2 is constant.

A key observation to be made, aside from the geometrical differences, is the Bo

at which deviations between models start to occur. Increasing the angle of the slope

seems to cause the first-order expression to deviate at smaller Bond numbers, e.g.

when α = 0 and θc = π/2 our expression does not deviate until Bo = 3, meanwhile

when α = π/6 our expression deviates when Bo = 2. This trend can also be seen

when α is increased to π/3 and π/2 in Fig. 2.5 and 2.6 respectively. These results
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lead us to the conclusion that our first-order expression for the shape of a sessile drop

is valid and accurate for sufficiently small Bo and α.
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Chapter 3

Quasi-steady evaporation of a

non-axisymmetric sessile droplet

3.1 Problem statement

Having discussed the shape of sessile drops under numerous conditions, we can now

continue to show the impact of these varying geometries on the evaporation of a

liquid droplet. In this chapter, we analytically derive the rate of evaporation using the

expression for the droplet shape (Eq. 2.8a) previously obtained. Numerical simulation

is then used to directly compare our results, testing the validity of the final expression.

In our analysis, we assume that the evaporation is purely diffusive, and any effects

due to advection are negligible.

Analogous to the derivation of the droplet shape in the previous chapter, we

attain a dimensionless expression for the rate of evaporation in terms of Bo, utilizing
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perturbation expansions. Ultimately, for us to determine the relationship between α

and the total rate of evaporation J , we need to incorporate our model for the droplet

shape, for which we know the relation to α. This is the main distinction between

our work, and previous investigations, and is the reason we use the same coordinate

space as the derivation of the drop shape (see Fig. 2.1c). In the following section, we

analytically derive an expression for the total rate of evaporation J , starting from the

Laplace equation. We show that including the first order model for the drop shape,

coupled with Green’s second identity, yield a surprisingly simple and concise formula.

To enhance and extend our analytical results, we numerically solve for the evap-

oration using a finite-volume method (FVM). The FVM simulations are intended

as supplementation for comparison to our analytical expression for evaporation. As

shown in Section §2.4, the numerical models for the droplet shape are much more

stable at larger Bo, for this reason the numerical models are used in the FVM simu-

lations. Since our derivation of J utilizes the analytical model for the droplet shape,

we are able to observe the accuracy when compared to the numerical simulations of

J at high Bo (outside the range of Bo � 1). In Section §3.3, we detail the process,

parameters, and conditions used in the numerical simulations.

In the last section, we show the results of the total rate of evaporation from both

of the analytical and numerical methods. We asses the accuracy of the analytical

expression for J by showing the relative error to our numerical simulations for the

drop geometries obtained in the previous chapter. Finally, we present and discuss
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the results and trends in J for the numerous parameters used to obtain the surface

geometries.

3.2 Analytical solution using a perturbation the-

ory

Having determined the equilibrium shape of the droplet, we are in a position to

answer the question we posed in the introduction, which was about the effect of

droplet deformation under gravity on how fast it evaporates. The rate at which the

droplet loses mass is obtained by integrating the flux of the liquid vapor concentration

in air over the free surface of the drop (denoted Sd), i.e.

J = −
∫
Sd

n ·∇c dS, (3.1)

where all the quantities are dimensionless. Specifically, the vapor concentration field

c and total evaporation rate J are nondimensionalized by cs− c∞ and DRc(cs− c∞),

respectively. Here, cs is the vapor concentration at Sd (saturation value), c∞ is the

far-field concentration, and D is the coefficient of binary diffusion of the vapor in air.

We assume, as is routine, that the transport of the liquid vapor in the surrounding

quiescent air is dominated by diffusion [21]. Hence, defining φ = c− c∞/(cs− c∞), we

have

∇2φ = 0 with φ = 1 at Sd, n ·∇φ→ 0 at Ss, and φ = 0 as r →∞, (3.2)

where Ss represents the surface of the substrate.
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Given that Sd is described by r = R = 1 + BoR(1) +O(Bo2), it is only natural to

express the relative concentration field φ as

φ = φ(0) + Boφ(1) +O(Bo2), (3.3)

which upon substitution into Eq. 3.2, yields

∇2φ(0) = 0 with n ·∇φ(0) = 0 at Ss and φ(0) → 0 as r →∞, (3.4a)

∇2φ(1) = 0 with n ·∇φ(1) = 0 at Ss and φ(1) → 0 as r →∞, (3.4b)

where the boundary conditions at Sd are omitted since an extra step is required to

derive them. Consider a Taylor series expansion of φ about r = 1 as

φ(r, θ, ϕ) = φ(1, θ, ϕ) + (r − 1)
∂φ

∂r

∣∣∣∣
r=1

+ . . . , (3.5)

and apply the boundary condition φ(R, θ, ϕ) = 1, while replacing Eq. 3.3 for φ, to

arrive at

φ(r = R, θ, ϕ) = φ(0)(1, θ, ϕ) + Bo

[
φ(1)(1, θ, ϕ) +R(1) ∂φ

(0)

∂r

∣∣∣∣
r=1

]
+O(Bo2) = 1.

(3.6)

Requiring this equation to hold for each order of Bo, we find

φ(0)(1, θ, ϕ) = 1 and φ(1)(1, θ, ϕ) = −R(1) ∂φ
(0)

∂r

∣∣∣∣
r=1

, (3.7)

which complete the boundary value problems in 3.4. Here, we have essentially con-

verted the original boundary condition at Sd to a set of boundary conditions at the

surface of the spherical cap r = 1, which we refer to hereafter as S0.
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To proceed, we also expand J in term of Bo as

J = J (0) + Bo J (1) +O(Bo2), (3.8)

where

J (i) = −
∫
Sd

n ·∇φ(i) dS = −
∫
S0

n ·∇φ(i) dS with i = 0, 1. (3.9)

The fact that Sd can be replaced with S0 in the above surface integral directly results

from having ∇2φ(i) = 0, everywhere in the domain including in the volume enclosed

between S0 and Sd. Laplace’s equation 3.4a for φ(0) can be solved exactly in a toroidal

coordinate system that fits the boundary of the droplet using a special form of the

method of separation of variables. Details of the derivation is available in Ref. 31.

Thus, φ(0) is already known, and so are its normal gradient at S0 and its corresponding

surface integral, which can be written in the forms

n ·∇φ(0)
∣∣
S0

=
∂φ(0)

∂r

∣∣∣∣
r=1

= −1

2
−

√
2 sin2 θc

(cos θ − cos θc)
3/2

×
∫ ∞
0

cosh θcτ

coshπτ
tanh [(π − θc) τ ]P−1/2+iτ

(
1− cos θ cos θc
cos θ − cos θc

)
τ dτ,

(3.10a)

J (0) = −
∫ 2π

0

∫ θc

0

∂φ(0)

∂r

∣∣∣∣
r=1

sin θ dθ dφ = −2π

∫ θc

0

∂φ(0)

∂r

∣∣∣∣
r=1

sin θ dθ

= π sin θc

{
sin θc

1 + cos θc
+ 4

∫ ∞
0

1 + cosh 2θcτ

sinh 2πτ
tanh [(π − θc) τ ] dτ

}
,

(3.10b)

where P−1/2+iτ is the the conical function of the first kind, that can be evaluated via

Pν(ζ) =
1

π

∫ π

0

(
ζ + cos η

√
ζ2 − 1

)−(ν+1)

dη. (3.11)

So, we are left to determine J (1).
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If we were to follow the conventional approach, we would first solve Eq. 3.4b for

φ(1) and then integrate the associated flux over S0 to obtain J (1). Here, however,

we take an alternative approach that bypasses the elaborate task of solving for φ(1)

and directly calculates J (1). Consider multiplying Laplace’s equation 3.4b by φ(0) and

Laplace’s 3.4a by φ(1), and then subtracting to reach

φ(0)∇2φ(1) − φ(1)∇2φ(0) = 0. (3.12)

After adding and subtracting ∇φ(0) · ∇φ(1) and rearranging, this equation can be

rewritten as

∇ ·
(
φ(0)∇φ(1)

)
= ∇ ·

(
φ(0)∇φ(0)

)
. (3.13)

We now integrate Eq. 3.13 over the volume external to the drop and use the divergence

theorem to obtain ∫
S

φ(0)n ·∇φ(1) dS =

∫
S

φ(1)n ·∇φ(0) dS, (3.14)

where S denotes all the surfaces bounding the distribution domain of φ(0) and φ(1),

i.e. S = S0 + Ss + S∞, with S∞ representing a bounding surface at large distances.

The above result is known as the Green’s second identity and is the scalar version of

the reciprocal theorem often used in solid and fluid mechanics [39]. It is also a special

case of the reciprocal theorem developed by Vandadi et al. [40] for convective heat

and mass transfer from particles in Stokes and potential flows.

Contributions from S∞ to Eq. 3.14, vanish since both φ(0) and φ(1) decay at least

as fast as 1/r as r → ∞. Integrals over the substrate do not contribute either as
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n ·∇φ(i) = 0 at Ss. Hence, applying Eqs. 3.7, we find

J (1) = −
∫
S0

n ·∇φ(1) dS =

∫ 2π

0

∫ θc

0

R(1)

(
∂φ(0)

∂r

∣∣∣∣
r=1

)2

sin θ dθ dϕ, (3.15)

which, after incorporating eq 2.12 for R(1), simplifies to

J (1) = 2π cosα

∫ θc

0

R(1)
ax (θ)

(
∂φ(0)

∂r

∣∣∣∣
r=1

)2

sin θ dθ. (3.16)

Note that the integral involving R(1)
nax is zero because

∫ 2π

0
cosϕ dϕ = 0.

3.3 Numerical solution via a finite volume method

Our solution for the evaporation is anticipated to be accurate to the leading order

correction for the drop shape. To test the expected accuracy, we use numerical FVM

simulations to generate results with which we can compare solutions. To conduct

these simulations, we use the open-source CFD software OpenFOAM, which allows

us to very precisely control the parameters used, the deiscretization of the surface, as

well as define the solution method for our simulations.

The discretization of the surface geometry is a vital part of numerical analysis, and

is worth mentioning in detail. The method used in our FVM simulations is different

than that used previously in the Surface Evolver. Unlike the Surface Evolver, which

uses a simplicial complex representation, OpenFOAM discretizes the surface of the

droplets using a polygonal mesh [41]. This offers grater flexibility when it comes to

the complex geometries which is present in asymmetric sessile drops, for there is no

restriction on the number of edges on each polygonal element. The geometries used in
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Figure 3.1: Example of a multi-block grid used for numerically solving
Laplace’s equation outside a sessile droplet (shown in blue). For clarity, only
surface meshes on the symmetry plane and substrate are shown. The grid
is generated by the snappyHexMesh utility of OpenFOAM [41], and coarsen
as the distance from the free surface of the drop increases.

our FVM simulations are generated from the Surface Evolver since they are already

discretized into a surface mesh with which we can create a solid form (see Figure

2.2b). Using the Surface Evolver geometries also allows us to conduct simulations for

higher Bo, since the theoretical geometries become less accurate with increasing Bo.

By running simulations for higher Bo (beyond the condition that Bo � 1) we can

find out the true limit for which our analytical model for the rate of evaporation is

accurate.

The rate of evaporation is calculated by solving Laplace’s equation (from our

assumption of purely diffusive evaporation) for the vapor concentration field. Since

we are only interested in the relative change of the evaporation (compared to Bo = 0)

at various α (for constant volume drops), we use a dimensionless model for evaporation

in our numerical simulations. By setting the c = 1 at the droplet surface, c = 0 at the
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far-field, and all other non-pertinent parameters such as diffusivity D and density ρ

to one, we create a dimensionless model for evaporation that only depends on Bo and

α. The outer boundary at infinity is modeled by a hemisphere of radius 100R, whose

center coincides with the center of the contact line circle. Given our large domain

size, we use a multi-block mesh that is refined in the vicinity of the droplet to reduce

the overall number of computational cells, while accurately resolving the gradients

where they matter the most (see Figure 3.1). The smallest and largest grid spacings

used are approximately 0.03R and 2R, respectively. With all of the parameters and

procedures described, we calculate the total rate of evaporation for the geometries

previously generated. Implementation details of the FVM version used in OpenFOAM

can be found in Ref. 41.

3.4 Results and discussion

As previously discussed, we expect our final solution for the total rate of evaporation

to be accurate to the leading order correction to the drop shape. To test this, we

compare the results for the total rate of evaporation from both our analytical solution

and our numerical simulations. Just like our comparison of the droplet shapes, we

use the same parameters (Bo, α, and θc) for the geometries in our analysis of the

evaporation. Figure 3.2 shows the percentage difference between our analytical and

numerical results for the total rate of evaporation.

These error plots show, under the condition that Bo� 1, our analytical solution
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Figure 3.2: Percent difference δ between our analytical and numerical mod-
els for (a) θc = π/6, (b) θc = π/3, (c) θc = π/2, and (d) θc = 2π/3.

for the rate of evaporation closely matches that of our numerical simulations to within

3% (see Figure 3.2). Surprisingly, our expression is also shown to be valid for larger

Bo as well (outside the Bo � 1 condition), or in the case of small θc (see Figure

3.2a) very large Bo. With this comparison validating our analytical expression, we

can continue to show the results for the evaporation itself.

The results for the evaporation are presented in terms of dimensionless parameters.

The evaporation is described as J/J (0) for any given Bo, α, and θc. With the results

converted to dimensionless terms, we can observe the relative changes on the rate of
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Figure 3.3: Normalized total rate of evaporation for (a) θc = π/6, (b)
θc = π/3, (c) θc = π/2, and (d) θc = 2π/3.

evaporation with changing Bo and α. These results are presented in Figure 3.3 for

various Bo, α, and θc.

Interestingly, we find that, at small Bo and α, the rate of evaporation experiences

only minor fluctuations and remains almost unchanged despite having noticeable

geometrical differences. We only start to see minor deviations (4–12%) in evaporation

with larger Bo (i.e. Bo > 1). These results show, perhaps counter-intuitively, that the

angle of inclination of the substrate (for a given Bo) does not have a significant impact

on the evaporation rate.
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Chapter 4

Summary and future directions

We have theoretically examined the evaporation of a sessile droplet pinned on an

inclined surface, tilted to an angle α. Starting by finding the droplet shape, we ana-

lytically derived a first order expression from the Young-Laplace equation in terms of

the Bond number, contact angle of the unperturbed droplet, and angle of inclination

(Eq. 2.12). Using an energy minimization method, we numerically calculated the drop

shapes for comparison to our analytical model. Final comparison between our analyt-

ical and numerical models (see Figs. 2.3-2.6) clearly show that our analytical model

for the asymmetric drop shape very closely matches that of the numerical model for

a wide range of Bond numbers, well beyond the expected limit of Bo� 1.

The total rate of evaporation, being the final goal of our analysis, was found in

a similar fashion to the droplet shape, i.e. both analytical and numerical methods

were used. Under the condition that Bo � 1, our analytical solution for the rate

of evaporation very closely matches that of our numerical simulations. Additionally,
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our expression is also shown to be valid for larger Bo as well (outside the Bo � 1

condition), or in the case of small θc, very large Bo. Remarkably, we find that, at

small Bo and α, the rate of evaporation experiences only minor fluctuations and

remains almost unchanged despite having noticeable geometrical differences. These

results show, perhaps counter-intuitively, that the angle of inclination of the substrate

does not have a significant impact on the total rate of evaporation. Furthermore,

comparison between analytical and numerical calculations reveals that considering

only the leading order corrections to the shape of the droplet and vapor concentration

distribution provides estimates that are valid well beyond their intended limit of very

small Bo.

After conducting the theoretical analysis presented in this paper, a few new areas

of interest for future study arise. First of which is to find the leading order correction

to the concentration field. The local flux of the concentration field is an important

feature, and is needed to determine the boundary condition for the evaporation-

induced fluid flow inside a sessile droplet (see e.g. [42, 43]). This is of interest when

studying the deposition patterns of fully evaporated colloidal droplets (see e.g. [44]).

With this further understanding, one could find the effect of the inclination angle on

the so called coffee-ring effect (see e.g. [28]).
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